Abstract
The 2-way quantum finite automaton introduced by Kondacs and Watrous [Proceedings of the 38th Annual Symposium on Foundations of Computer Science, 1997, IEEE Computer Society, pp. 66--75] can accept nonregular languages with bounded error in polynomial time. If we restrict the head of the automaton to moving classically and to moving only in one direction, the acceptance power of this 1-way quantum finite automaton is reduced to a proper subset of the regular languages. In this paper we study two different models of 1-way quantum finite automata. The first model, termed measure-once quantum finite automata, was introduced by Moore and Crutchfield [ Theoret. Comput. Sci., 237 (2000), pp. 275--306], and the second model, termed measure-many quantum finite automata, was introduced by Kondacs and Watrous [Proceedings of the38th Annual Symposium on Foundations of Computer Science, 1997, IEEE Computer Society, pp. 66--75]. We characterize the measure-once model when it is restricted to accepting with bounded error and show that, without that restriction, it can solve the word problem over the free group. We also show that it can be simulated by a probabilistic finite automaton and describe an algorithm that determines if two measure-once automata are equivalent. We prove several closure properties of the classes of languages accepted by measure-many automata, including inverse homomorphisms, and provide a new necessary condition for a language to be accepted by the measure-many model with bounded error. Finally, we show that piecewise testable sets can be accepted with bounded error by a measure-many quantum finite automaton, introducing new construction techniques for quantum automata in the process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.