Abstract

We consider a sequence, of random length M, of independent, continuous observations Xi, 1 ≤ i ≤ M, where M is geometric, X1 has cumulative distribution function (CDF) G, and Xi, i ≥ 2, have CDF F. Let N be the number of upper records and let Rn, n ≥ 1, be the nth record value. We show that N is independent of F if and only if G(x) = G0(F(x)) for some CDF G0, and that if E(|X2|) is finite then so is E(|Rn|), n ≥ 2, whenever N ≥ n or N = n. We prove that the distribution of N, along with appropriately chosen subsequences of E(Rn), characterize F and G and, along with subsequences of E(Rn - Rn-1), characterize F and G up to a common location shift. We discuss some applications to the identification of the wage offer distribution in job search models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.