Abstract
In this paper, we mainly study the Abadie constraint qualification (ACQ) and the strong ACQ of a convex multifunction. To characterize the general difference between strong ACQ and ACQ, we prove that the strong ACQ is essentially equivalent to the ACQ plus the finite distance of two image sets of the tangent derivative multifunction on the sphere and the origin, respectively. This characterization for the strong ACQ is used to provide the exact calmness modulus of a convex multifunction. Finally, we apply these results to local and global error bounds for a convex inequality defined by a proper convex function. The characterization of the strong ACQ enables us to give primal equivalent criteria for local and global error bounds in terms of contingent cones and directional derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.