Abstract
We aim at characterizing generalized functionals of discrete-time normal martingales. LetM=(Mn)n∈Nbe a discrete-time normal martingale that has the chaotic representation property. We first construct testing and generalized functionals ofMwith an appropriate orthonormal basis forM’s square integrable functionals. Then we introduce a transform, called the Fock transform, for these functionals and characterize them via the transform. Several characterization theorems are established. Finally we give some applications of these characterization theorems. Our results show that generalized functionals of discrete-time normal martingales can be characterized only by growth condition, which contrasts sharply with the case of some continuous-time processes (e.g., Brownian motion), where both growth condition and analyticity condition are needed to characterize generalized functionals of those continuous-time processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.