Abstract

Occupancy sensors are electronic devices used to detect the presence of people in monitored areas, and the output of these sensors can be used to optimize lighting control, heating and ventilation control, and real-estate utilization. Testing methods already exist for certain types of occupancy sensors (e.g., passive infrared) to evaluate their relative performance, allowing manufacturers to report coverage patterns for different types of motion. However, the existing published techniques are mostly tailored for passive-infrared sensors and therefore limited to evaluation of large motions, such as walking and hand movement. Here we define a characterization technique for a Doppler radar occupancy sensor based on detecting a small motion representing human breathing, using a well-defined readily reproducible target. The presented technique specifically provides a robust testing method for a single-channel continuous wave Doppler-radar based occupancy sensor, which has variation in sensitivity within each wavelength of range. By comparison with test data taken from a human subject, we demonstrate that the mobile target provides a reproducible alternative for a human target that better accounts for the impact of sensor placement. This characterization technique enables generation of coverage patterns for breathing motion for single-channel continuous wave Doppler radar-based occupancy sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call