Abstract

The characterization of a custom-designed GC-based SAW e-Nose sensor system is presented here to study the sensing ability of the sensor system to detect and identify low medium and high toxic vapors. A semi-automated multi-vapor generator generates vapors of chemical compounds that are then exposed to the sensing system to examine its performance under various concentrations. Time-domain verses frequency response of GC-SAW Sensor is noted for repeated cycles against different chemical compounds like xylene, 1,2 dibromoethane, dimethyl sulfate, triethyl phosphate, nitrobenzene, phosphorous trichloride being tested. The generated data is examined using a principle component analysis (PCA) technique to detect a unique response for an individual chemical compound. Experimental results are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.