Abstract
Nanocrystalline samples of highly pure lead oxide were prepared by the sol-gel route of synthesis. X-ray diffraction and transmission electron microscopic techniques confirmed the nanocrystallinity of the samples, and the average sizes of the crystallites were found within 20 nm to 35 nm. The nanocrystallites exhibited specific anomalous properties, among which a prominent one is the increased lattice parameters and unit cell volumes. The optical band gaps also increased when the nanocrystallites became smaller in size. The latter aspect is attributable to the onset of quantum confinement effects, as seen in a few other metal oxide nanoparticles. Positron annihilation was employed to study the vacancy type defects, which were abundant in the samples and played crucial roles in modulating their properties. The defect concentrations were significantly larger in the samples of smaller crystallite sizes. The results suggested the feasibility of tailoring the properties of lead oxide nanocrystallites for technological applications, such as using lead oxide nanoparticles in batteries for better performance in discharge rate and resistance. It also provided the physical insight into the structural build-up process when crystallites were formed with a finite number of atoms, whose distributions were governed by the site stabilization energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.