Abstract

In this study, the concentration and structure of polycyclic aromatic hydrocarbons (PAHs) associated with the ambient PM10 in Basrah City, Iraq have been investigated for the first time. From December 2021 to February 2022, PM10 samples were collected on quartz fiber filters, extracted using an optimized extraction protocol, and analyzed for the sixteen US EPA priority PAHs. The results indicated that 4- and 5-ring PAHs represent 52% of the total detected PAHs. The most abundant PAHs over the study period were chrysene (1.2 ± 1.5 ng m−3), fluorene (0.9 ± 1.4 ng m−3), and benzo[b]fluoranthene (0.7 ± 0.9 ng m−3). Source identification suggested that PM10-bound PAHs primarily originated from pyrogenic and petrogenic activities in Basrah City. In addition, the cancer risk associated to PAH exposure was assessed based on benzo[a]pyrene equivalent concentration and was found ranging from 0.07 to 6.32 ng m-3; hence, it exceeded the threshold limit of 1.0 ng m−3 established by the European legislation (EU, 2014). Benzo[a]pyrene was determined to be main contributor to total carcinogenic power of the detected PAHs, accounting for 50.3%, followed by dibenz[a,h]anthracene (22.3%). Similarly, benzo[a]pyrene represented a major contributor to PAH associated mutagenicity, accounting for 43.5% of the total.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.