Abstract

The type of aluminosilicate precursor used in the synthesis of geopolymer binders plays a huge role in the resulting performance. Thus, it is critical to understand the properties of precursors and how they influence the corresponding performance of geopolymer binders. In this study, metakaolin and meta halloysite are used as the aluminosilicate precursor in the synthesis of geopolymer binders. These precursors are obtained locally in order to propel the sustainable development and application of geopolymers. The precursors were characterized and the corresponding influence on the reactivity, rheology and setting times of geopolymers was investigated. In addition to the influence of precursor type on the properties of the geopolymers, the effect of two silica moduli (i.e. 1.3 and 1.5) was also evaluated. The results from this study indicated that increasing the activator silica modulus from 1.3 to 1.5 extended the setting times and increased the stress strain of the geopolymer binders. Characterization of the precursors indicated that metakaolin has a higher amorphous content compared to that of meta halloysite. However, the finer particles of meta halloysite embodied it with the ability to participate in a faster geopolymerization and result in more formation of activation products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.