Abstract
ABSTRACTA key issue in using Polydimethylsiloxane (PDMS) based micropillars as cellular force transducers is obtaining an accurate characterization of mechanical properties. The Young’s modulus of PDMS has been extended from a constant in the ideal elastic case to a time-dependent function in the viscoelastic case. However, the frequency domain information is of more practical interest in interpreting the complex cell contraction behavior. In this paper, we reevaluated the Young’s relaxation modulus in the time domain by using more robust fitting algorithms than previous reports, and investigated the storage and loss moduli in the frequency domain using the Fourier transform technique. With the use of the frequency domain modulus and the deflection of micropillars in the Fourier series, the force calculation can be much simplified by converting a convolution in the time domain to a multiplication in the frequency domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.