Abstract

Previous theoretical and analytical studies have shown that microchannel heat sinks with a fractal-shaped network have many advantages over traditional parallel microchannels with respect to thermal resistance, temperature uniformity and pressure drop. However, to the best knowledge of the authors, no experimental investigations on fractal-shaped microchannel network heat sinks have been conducted so far to verify their performance. In this paper, we designed and fabricated a silicon-based microchannel heat sink with a single-layered fractal-shaped microchannel network using MEMS technology, and experimentally studied its pressure drop and thermal resistance characteristics under different mass flow rate and heat flux conditions. Numerical simulations are performed to predict the heat sink performance under the same experimental conditions. It is found that the experimentally measured pressure drop in the heat sink has a nonlinear relationship with the mass flow rate, which agrees very well with the numerical simulation result. It is also found that the experimentally measured thermal resistance is also in reasonably good agreement with the numerical simulation, and therefore indirectly verifies the conclusion of previous numerical simulations that the performance of the fractal-shaped microchannel network is better than that of traditional parallel microchannels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.