Abstract

To discover the physiological role of the Bacillus subtilis ExoA protein, which is similar in amino acid sequence to Escherichia coli exonuclease III, an exoA::Cm disruption was constructed in the chromosomal DNA of B. subtilis. There was no clear difference in tolerance to hydrogen peroxide and alkylating agents between the disruptant and the wild type strain. An expression plasmid of the ExoA in E. coli was constructed by inserting the exoA gene into the expression vector pKP1500. The purified ExoA was used to clarify enzymatic characterizations using synthetic DNA oligomers as substrates. A DNA oligomer containing a 1', 2'-dideoxyribose residue as an AP site, a DNA-RNA chimera oligomer, and a 3' end 32P-labeled oligomer were synthesized. It has been shown that the ExoA has AP endonuclease, 3'-5' exonuclease, ribonuclease H, and 3'-phosphomonoesterase activities. Thus, it has been confirmed that ExoA is a multifunctional DNA-repair enzyme in B. subtilis that is very similar to E. coli exonuclease III except that ExoA has lower 3'-5' exonuclease activity than that of E. coli exonuclease III.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.