Abstract

In this research, two nanocomposites of zinc oxide and graphitic carbon nitride were obtained in a 1:0.15 ratio for potential use as photoelectrocatalysts. Calcination and the simple reflux method were used to obtain routes for synthesizing zinc oxide and graphitic carbon nitride nanocomposites. Subsequently, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, and Raman spectroscopy analyses were performed, from which it was determined that there is a strong interaction between zinc oxide and graphitic carbon nitride in both nanocomposites. Nevertheless, the nanocomposite that exhibited the most significant band gap reduction was obtained by calcination, reaching 2.93 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.