Abstract
Ultrafine non-doped and yttria-doped zirconia (ZY) powders have been produced by a single-step plasma synthesis method. The amount of yttria doping was varied between 0 and about 10 mol%. The phase composition, structural parameters and morphology of the as-prepared powders have been examined by X-ray diffraction, neutron diffraction and electron microscopy. The average particle size of the produced powders was found to be around 30 nm, changing little with composition. The particles were mostly spherical but a large number of faceted single crystals were also present, as revealed by high resolution transmission electron microscopy. The ZY ultrafine powders were mixtures of a cubic and a non-transformable tetragonal zirconia phases. The amount of the tetragonal phase decreased with the overall yttria content but with a composition that remained almost the same. Neutron diffraction revealed diffuse scattering located at the positions of tetragonal maxima forbidden for cubic structure. The origin of diffuse scattering is associated with oxygen vacancies, either due to relaxation around Y 3+ ions or due to ordering of vacancies. X-ray diffraction showed no diffuse scattering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.