Abstract

The 1.5 μm ytterbium–erbium laser was extensively investigated in terms of its intensity and frequency noise characteristics. The energy transfer process between Yb and Er ions in the codoped active material was shown to reduce substantially the intensity noise induced by pump power fluctuations. To further suppress the intensity noise, a suitable control loop acting on the injection current of the pump laser diode was employed, providing for a 30-dB reduction of the relaxation oscillation peak. Some high-resolution laser spectroscopy measurements have been performed on the acetylene molecule by means of the tunable Yb–Er microlaser. Frequency locking and stabilization was achieved by both the fringe-side locking technique and the FM side-band technique, using different rovibrational lines of the C 2H 2. The beat note between two independently stabilized diode-pumped Yb–Er:glass lasers, operating at 1534.097 nm wavelength, yielded a long-term frequency stability of 170 kHz with an Allan standard deviation below 10 −10 for integration times between 10 ms and 1 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.