Abstract

All Xanthobacter strains studied are versatile autotrophic bacteria, able to grow on methanol and other substrates. Strain 25a, a yellow-pigmented, pleomorphic, Gram-negative bacterium, capable of autotrophic growth on methanol, formate, thiosulfate, and molecular hydrogen, was isolated from an enrichment culture inoculated with soil from a subtropical greenhouse. Subsequent studies showed that the organism also grows on a wide range of multicarbon substrates. Ammonia, nitrate and molecular nitrogen were used as nitrogen sources. The taxonomic relationship of strains H4-14 and 25a with previously described Xanthobacter strains was studied by numerical classification. Strain H4-14 was identified as a X. flavus strain, but the precise position of strain 25a remained uncertain. It probably belongs to a new species of the genus Xanthobacter. The levels of various enzymes involved in autotrophic and heterotrophic metabolism were determined following growth of strains H4-14 and 25a in batch and continuous cultures. The mechanisms involved in controlling ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis in Xanthobacter strains appear to be comparable to those observed for other autotrophic bacteria, namely repression by organic compounds and derepression by autotrophic energy sources, such as methanol and hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.