Abstract

As part of the ongoing research on finned U-shape heat pipes for CPU cooling, the present work focuses on the characterization of working fluid in vertically oriented twin U-shape heat pipe, by taking into account the gravity of flow. Two-dimensional FE simulation is performed under natural and forced convection modes, by using ansys-flotran. The best heat input and coolant velocity for the simulations are determined experimentally, corresponding to the least thermal resistance. The wall temperatures at the evaporator, adiabatic and condenser sections, and the velocity and pressure distributions of vapor and liquid, are analyzed. The total heat input for minimum thermal resistance in both natural and forced convection is found to be 50W, and the coolant velocity is 3m/s. The predicted and experimental wall temperatures are found in excellent match. It is observed that for the present U-shape heat pipe configuration, the difference in evaporator and condenser temperatures is significantly small, resulting in enhanced heat transfer compared to the conventional heat pipes. The sintered copper wick has a small pore size, resulting in low wick permeability, leading to the generation of high capillary forces for anti-gravity applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.