Abstract

A non-destructive and surface-sensitive surface photovoltage (SPV) technique was employed to investigate the influence of important wet-chemical treatments on the electronic surface properties. The preparation-induced surface roughness as well as the hydrogen and oxide coverage were additionally determined by spectroscopic ellipsometry (SE). High values of interface charge and a high density of rechargeable interface states were observed on atomically rough surfaces and interfaces after HF-treatment and conventional wet-chemical oxidation. Both interface charge and density of rechargeable interface states could be reduced significantly by preparing an atomically flat Si surface and a well-ordered silicon/silicon oxide interface by applying special H-termination and hot-water oxidation procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call