Abstract

Synthetic water-soluble polymeric materials are widely employed in e.g. cleaning detergents, personal care products, paints or textiles. Accordingly, these compounds reach sewage treatment plants and may enter receiving waters and the aquatic environment. Characteristically, these molecules show a polydisperse molecular weight distribution, comprising multiple repeating units, i.e. a homologous series (HS). Their analysis in environmentally relevant samples has received some attention over the last two decades, however, the majority of previous studies focused on surfactants and a molecular weight range <1000 Da. To capture a wider range on the mass versus polarity plane and extend towards less polar contaminants, a workflow was established using three different ionization strategies, namely conventional electrospray ionization, atmospheric pressure photoionization and atmospheric pressure chemical ionization. The data evaluation consisted of suspect screening of ca. 1200 suspect entries and a non-target screening of HS with pre-defined accurate mass differences using ca. 400 molecular formulas of repeating units of HS as input and repeating retention time shifts as HS indicator.To study the fate of these water-soluble polymeric substances in the wastewater treatment process, the different stages, i.e. after primary and secondary clarifier, and after ozonation followed by sand filtration, were sampled at a Swiss wastewater treatment plant. Remaining with two different ionization interfaces, ESI and APPI, in both polarities, a non-targeted screening approach led to a total number of 146 HS (each with a minimum number of 4 members), with a molecular mass of up to 1200 detected in the final effluent. Of the 146 HS, ca 15% could be associated with suspect hits and approximately 25% with transformation products of suspects. Tentative characterization or probable chemical structure could be assigned to almost half of the findings. In positive ionization mode various sugar derivatives with differing side chains, for negative mode structures with sulfonic acids, could be characterized. The number of detected HS decreased significantly over the three treatment stages. For HS detectable also in the biological and oxidative treatment stages, a change in HS distribution towards to lower mass range was often observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.