Abstract

Volume-activated chloride channel (VACC) plays vital roles in many physiological functions. In bile duct epithelium, VACC actively participates in biliary secretion and cell volume regulation, and it mediates regulatory volume decrease (RVD). Recently, we have shown that mouse cholangiocytes have an intact RVD via VACC and K(+) conductance. However, such cell volume regulation was not studied in the normal human cholangiocyte. Volume measurement by Coulter counter and whole-cell patch clamp technique were used to characterize the RVD and VACC in human cholangiocyte cell line (HBDC). When exposed to hypotonic solution, HBDC exhibited an intact RVD, which was inhibited by 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), NPPB (5-nitro-2'- (3-phenylpropylamino)-benzoate), DIDS (4,4'-diisothiocyanatostilbene-2-disulfonic acid), and tamoxifen, but was not affected by the removal of extracellular calcium. During RVD, HBDC exhibited large, outwardly rectifying currents and time-dependent inactivation at positive potential. The amplitude of the outward current was approximately 3 times of that of the inward current, and this volume-activated current returned to the baseline when switched to isotonic solution. The amplitude and reversal potential of the volume-activated current was dependent on Cl(-) concentration, and the VACC was significantly inhibited by replacing chloride with gluconate, glutamate, sucrose, and acetate in the hypotonic solution. In addition, classical VACC inhibitors, such as NPPB or tamoxifen, inhibited the VACC. These inhibitory effects were reversible with washing out the inhibitors from the bath solution. The present study is the first to characterize and show that HBDC has an intact RVD, mediated by VACC, which has similar electrophysiological characteristics as that in mouse cholangiocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call