Abstract

The project reported here provides microbial characterization support to the Waste Management Systems (WMS) element of NASA's Life Support and Habitation Systems (LSHS) program. Conventional microbiological methods were used to detect and enumerate microorganisms in STS Volume F Compartment trash for three shuttle missions: STS 133, 134, and 135. This trash was usually made available within 2 days of landing at KSC. The Volume F bag was weighed, opened and the contents were cataloged and placed into categories: personal hygiene items - inclUding EVA maximum absorbent garments (MAGs) and Elbow packs (daily toilet wipes, etc), drink containers, food waste (and containers), office waste (paper), and packaging materials - plastic film and duct tape. The average wet trash generation rate for the three STS missions was 0.362 % 0.157 kgwet crew 1 d-1 . This was considerably lower and more variable than the average rate for 4 STS missions reported for FY10. Trash subtotals by category: personal hygiene wastes, 56%; drink items, 11 %; food wastes, 18%; office waste, 3%; and plastic film, 12%. These wastes have an abundance of easily biodegraded compounds that can support the growth of microorganisms. Microbial characterization of trash showed that large numbers of bacteria and fungi have taken advantage of this readily available nutrient source to proliferate. Exterior and interior surfaces of plastic film bags containing trash were sampled and counts of cultivatable microbes were generally low and mostly occurred on trash bundles within the exterior trash bags. Personal hygiene wastes, drink containers, and food wastes and packaging all contained high levels of, mostly, aerobic heterotrophic bacteria and lower levels of yeasts and molds. Isolates from plate count media were obtained and identified .and were mostly aerobic heterotrophs with some facultative anaerobes. These are usually considered common environmental isolates on Earth. However, several pathogens were also isolated: Staphylococcus aureus and Escherichia coli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call