Abstract

A dynamic polarization scanning ellipsometry technique based on Stokes polarimetry is proposed for dynamically characterizing a voltage-driven twisted nematic liquid crystal (TNLC) cell. In the proposed method, the six effective ellipsometric parameters are extracted under modulation voltages ranging from 0 V ~ + 10 V using four linearly polarized input lights. The profiles of the tilt angle and twist angle are calculated as a function of the modulation voltage. The validity of the proposed method is confirmed by comparing the experimental results for the effective ellipsometric parameters of a TNLC cell with the analytical results. Furthermore, a genetic algorithm (GA) based on a curve-fitting technique is used to inversely extract the pretilt angle, twist angle and rubbing direction of the TNLC cell. These extracted values are then compared to the known valued of the TNLC cell. In general, the results presented in this paper show that the proposed method provides a reliable means of obtaining the dynamic optical properties of a TNLC cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.