Abstract
Voltage generation was obtained using a water droplet characterization on a taro (Colocasia esculenta L) leaf surface. This method relies on the superhydrophobic effect from the contact angle between the water droplet and the taro leaf’s surface allowing electron jumping and voltage generation. Water droplets were dropped on the top of taro leaf surface equipped with aluminum foil underneath as an electrode. The voltage was measured at various slope angles of 20°, 40° and 60° in a real-time basis. A digital camera was used to capture the droplet movement and characterization. It is found that the taro leaf has a surface morphology of nano-sized pointed pillars which created a superhydrophobic field. The energy generation was primarily obtained from the electron jump which was caused by the surface tension of the nano-stalagmite structure assisted by the minerals contained in the taro leaf surface. The results reported that the smaller the droplet radius (the smaller the droplet surface area), the greater the droplet surface tension and the greater the voltage generation. Furthermore, the highest voltage generation was obtained 321.2 mV at 20°-degree angle of slopes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.