Abstract

This work focuses on transport and properties of ash from the Icelandic volcano Grímsvötn that erupted in spring 2011. Atmospheric transport of volcanic ash from the eruption was simulated using the Danish Emergency Response Model of the Atmosphere (DERMA). The arrivals of volcanic particles were detected on-line at Mace Head at the West coast of Ireland during volcanic plume advection identified by high resolution time of flight aerosol mass spectrometry (HR-ToF AMS).Based on DERMA information aerosol particles were collected in Copenhagen, Denmark, before predicted arrival of the ash plume and during a period where ash was present in the air.Analysis of the meteorological conditions shows that the particles collected before arrival of the volcanic ash may serve as a good reference sample allowing identification of significant changes in ambient aerosol properties during the volcanic ash event over Copenhagen. Using single particle analysis in scanning electron microscopy (SEM), data on structure, chemical composition, size and morphology of individual volcanic ash particles from the Grímsvötn eruption after atmospheric transport to Scandinavia are provided. Particles were sliced with Focused Ion Beam (FIB). Element mappings from cross-sections through collected volcanic ash particles reveal inhomogeneous distributions of the elements K, Mg, Fe and Ti.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.