Abstract

HS-SPME/GC-MS analysis was carried out to characterize the profile of volatile organic compounds (VOCs) in kiwiberry cultivars (Geneva and Weiki) exposed to high hydrostatic pressure (HHP) (450–550–650/5 and 15 min). The sum of individual VOCs in Geneva (6.493 mg/kg) and Weiki (11.939 mg/kg) samples was found to be significantly reduced after processing, particularly for pressurization conditions of 650 MPa/15 min (decrease of 62%) and 550 MPa/15 min (decrease of 84%), respectively. On the other hand, Geneva and Weiki exposed to 450 MPa/5 min manifested the lowest loss in the sum of the VOCs. Geneva exposure to 450 MPa/5 min led to an increase in the hexanal (r = 0.782) and linalool (r = 0.806) content. Sample pressurization (450 MPa/15 min) promoted the formation of methyl butanoate, ethyl hexanoate, and cis-geraniol, simultaneously increasing the benzaldehyde (r = 0.886) concentration. However, the treatment of Weiki at 450 MPa/5 min favored trans-2-heptenal (r = 0.999) and linalool (r = 0.970) formation, as well as the (-)-terpinen-4-ol (r = 0.848) and geraniol (r = 0.694) content. Ethyl butanoate, hexanal, and 1-octen-3-ol were highly concentrated in the HHP-treated (450 MPa/5 or 15 min) Weiki. Pressurization decreased the terpenoid contribution, but also increased the contribution of alcohols and aldehydes to the overall VOC number in both tested cultivars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call