Abstract

The properties of the microsomal vitamin K-dependent carboxylase from the livers of the adult ox and dicoumarol-treated calf were investigated. The enzymes from both sources utilized glutamic residues of synthetic peptides as substrates and could be solubilized with Triton X-100 similarly to the enzyme from vitamin K-deficient rat liver. Under the optimal assay conditions, the microsomes from calf liver had peptide carboxylase activity comparable with that of the rat liver microsomes and 6.5-fold that of adult ox liver microsomes. The apparent Km for reduced vitamin K and the ionic strength optima of the calf and adult ox enzyme clearly differ from those of the rat enzyme. Pyridoxal phosphate activated the adult ox carboxylase only slightly, whereas the calf enzyme was activated by pyridoxal phosphate as effectively as was the enzyme from the vitamin K-deficient rat. Mn2+ activated the adult ox enzyme 9-fold and calf enzyme 22-fold under optimal conditions (no KCl). Three other divalent metal cations (Ca2+, Ba2+, and Mg2+) activated the adult ox and calf enzymes to about half the extent caused by Mn2+, KCl inhibited this activation. The vitamin K-dependent carboxylase from the dicoumarol-treated calf is apparently more tightly bound to the microsomal membrane than is the adult ox enzyme. In many other respects (pH optimum), temperature optimum, Km values for peptide substrate, substrate specificity, inhibitor effects), the properties of the adult ox and calf enzymes resemble closely those of the rat enzyme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.