Abstract

The linear viscoelastic (LVE) limits and rheological properties of bitumen-filler mastics were determined using a dynamic shear rheometer (DSR). Strain and frequency sweeps were performed on mastic specimens over a wide range of test temperature and frequency conditions. The use of an empirical algebraic equation of the Christensen and Anderson model (CA model) was used to characterize the LVE rheological behavior of the mastics in this study. Test results showed that the LVE limits for the concentrated suspension mastics were more restrictive than those for the dilute suspension mastics. Filler particles were likely to cause a hydrodynamic interaction in the concentrated suspension system. A significant difference in stiffening effect for the concentrated suspension mastics was observed due to the filler effective volume as well as the interparticle interaction. For the dilute suspension mastics, the difference in filler stiffening effect was minimal irrespective of filler type in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call