Abstract

Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a typical single-layer capsid dsRNA virus belonging to the Reoviridae family of the Cypovirus genus. Previous studies have shown that the BmCPV major capsid shell protein (CSP) has the ability to self-assemble into virus-like particles (VLPs), and cryo-electron microscopy of the BmCPV virions has revealed a tight mutual binding region between CSP and another capsid protein known as the Large Protrusion Protein (LPP), which further stabilizes the capsid shell. In this study, the multi-gene baculovirus expression system, Ac-MultiBac, was used to produce both solely CSP-based and CSP-LPP co-assembled VLPs. Transmission electron microscopy (TEM) results showed that addition of LPP did not affect the assembly of VLPs resulting in almost identical structure in both cases. However, ex vivo administration of VLPs to silkworm midgut tissue showed that CSP-based VLPs did not induce a significant transcriptional response in the innate immunity and RNAi gene cascades, compared to the co-assembled CSP-LPP based VLPs and the natural BmCPV virions isolated from polyhedra. The experimental results indicate that CSP and LPP attach tightly (“Plug and Display” model with CSP acting as “catcher” and LPP as “tag”) to form VLPs that have a structure similar to that of the native CPV virions. Moreover, our results showed that the formation of VLPs with the two BmCPV capsid proteins is feasible, which can form the basis for the production of BmCPV-based VLPs as a new type of biological material to display exogenous proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call