Abstract

Efficient design of fluidized-bed biomolecule adsorption from crude feed stock requires particles with elevated density, large adsorption capacity and broad chemical stability. Moreover, combinations of small particle diameters with high densities allow for high fluidization velocities while preserving a rapid mass transfer. This approach has been implemented by combining stable porous mineral oxide of high density (2.2, 4.7, 5.7, 9.4 g/ml) with functionalized hydrogels. The cross-linked hydrogel derivative fills the internal porosity of the beads and provides a high equilibrium binding capacity. Various porous mineral oxides (silica, titania, zirconia and hafnia) have been characterized in term of fluidization behavior, surface reactivity and chemical resistance to harsh CIP procedures. Porous zirconia particles were also modified into ion-exchangers by suitable surface modification and intraparticle polymerization of functionalized stable derivatives of acrylic monomers. Back-mixings in fluidized bed columns were analyzed by residence time distribution analysis of inert tracers. 328 and 218 mixing plates per meter were found for respectively, bed expansions of 1.7 and 2.9. The dynamic protein adsorption behaviors of zirconia-based polymeric anion-exchange sorbents were obtained in fluidized-bed, using BSA as model protein. A dynamic binding capacity of 62 mg/ml was observed at a fluidizing velocity of 320 cm/h. These investigations substantiate the favorable physical and chemical characteristics anticipated for dense composite beads for use as fluidized bed adsorbents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call