Abstract

Novel ultraviolet (UV)-cured gel polymer electrolytes based on polyethyleneglycol diacrylate (PEGDA) oligomer and polyvinylidene fluoride (PVdF) are prepared and characterized. UV-curing of PEGDA oligomer containing PVdF and ethylene carbonate (EC)-based liquid electrolyte yields chemically and physically cross-linked PEGDA/PVdF blend gel electrolytes. PEGDA/PVdF blend films show much higher mechanical properties and electrolyte liquid retention than pure PEGDA film. The ionic conductivity ( σ) of a PEGDA/PVdF (5/5) blend electrolyte reaches about 4 mS cm −1 at ambient temperature and is as high as 1 mS cm −1 at 0 °C. All the blend electrolytes are electrochemically stable up to 4.6 V versus Li/Li +. The cation transference number ( t +) measured by dc micropolarization exceeds 0.5 at room temperature. Li/(PEGDA/PVdF)/LiCoO 2 cells ( 2 cm×2 cm) retains >91% of its initial discharge capacity after 50 cycles at the C/3 rate (2 mA cm −2) and delivers about 70% of full capacity with an average load voltage of 3.6 V at the C/1 rate. Cell performance is stable up to 80 °C because PVdF chains might be stabilized by entanglement with the chemically cross-linked PEGDA network structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.