Abstract
The aim of this study was to examine spinal neuronal processing of innocuous and noxious mechanical inputs from the esophagus in diabetic rats. Streptozotocin (50 mg/kg, ip) was used to induce diabetes in 15 male Sprague–Dawley rats, and vehicle (10 mM citrate buffer) was injected into 15 rats as control. Four to eleven weeks after injections, extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated rats. Esophageal distensions (ED, 0.2, 0.4 ml, 20 s) were produced by water inflation of a latex balloon in the thoracic esophagus. Noxious ED (0.4 ml, 20 s) altered activity of 44% (55/126) and 38% (50/132) of spinal neurons in diabetic and control rats, respectively. The short-lasting excitatory responses to ED were encountered more frequently in diabetic rats (27/42 vs 15/41, P < 0.05). Spinal neurons with low threshold for excitatory responses to ED were more frequently encountered in diabetic rats (33/42 vs 23/41, P < 0.05). However, mean excitatory responses and duration of responses to noxious ED were significantly reduced for high-threshold neurons in diabetic rats (7.4 ± 1.1 vs 13.9 ± 3.3 imp/s; 19.0 ± 2.3 vs 31.2 ± 5.5 s; P < 0.05). In addition, more large size somatic receptive fields were found for spinal neurons with esophageal input in diabetic rats than in control rats (28/42 vs 19/45, P < 0.05). These results suggested that diabetes influenced response characteristics of thoracic spinal neurons receiving mechanical esophageal input, which might indicate an altered spinal visceroceptive processing underlying diabetic esophageal neuropathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.