Abstract

This work introduces new methods to characterize dispersions of small-diameter or low-mass-fraction nanoparticles (NPs) by single-particle inductively coupled plasma-mass spectrometry (SP ICP-MS). The optimization of ion extraction, ion transport, and the operation of the quadrupole with increased mass bandwidth improved the signal-to-noise ratios significantly and decreased the size detection limits for all NP dispersions investigated. As a model system, 10.9 ± 1.0 nm Au NPs were analyzed to demonstrate the effects of increasing ion transmission. Specifically, increasing the mass bandwidth of the quadrupole improved the size detection limit to 4.2 nm and enabled the resolution of NP signals from ionic background and noise. Subsequently, the methods were applied to the characterization of lanthanide-doped upconversion nanoparticles (UCNPs) by SP ICP-MS. Three different types of UCNPs (90 nm NaYF4: 20% Yb, 2% Er; 20 nm NaGdF4: 20% Yb, 1% Er; 15nm NaYF4: 20% Yb, 2% Er) were investigated. Y showed the best signal-to-noise ratios with optimized ion extraction and transport parameters only, whereas the signal-to-noise ratios of Gd, Er, and Yb were further improved by increasing the mass bandwidth of a quadrupole mass filter. The novel methods were suitable for detailed characterization of diluted UCNP dispersions including particle stoichiometries and size distributions. A Poisson model was further applied to assess particle-particle interactions in the aqueous dispersions. The methods have considerable potential for the characterization of small-diameter and/or low-mass-fraction nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call