Abstract

Unswept and vacuum-swept synthetic quartz crystals were investigated in order to determine the mechanisms responsible for the radiation sensitivity of this material. Results were obtained by means of infrared (IR) spectroscopy, dielectric relaxation spectroscopy (DRS), and thermoluminescence (TL). First, the effect of vacuum sweeping was clearly demonstrated in IR absorption by a significant decrease in the amount of hydroxyl ions and in DRS by the disappearance of the dielectric loss peak arising from the relaxation of alkali ions. Second, it was shown that swept quartz is less sensitive to irradiation than the unswept crystal. A sharp decrease in the TL sensitivity of the electrolyzed material was observed in the energy range corresponding to the recombination of alkaline-electronic defects. DRS results indicated that the dielectric signal is shifted toward a lower energy range for both types of crystals, suggesting that the irradiation greatly facilitates the relaxation of alkaline species by creating low energy hosting sites. However, this shift is drastically less pronounced in the swept quartz because relaxing species are more stable in this material. Third, a correlation was established in TL between trapped charge carriers at point defects in quartz and the frequency variation in quartz oscillators, which is a very promising result for space applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call