Abstract

Very fine separation of proteins by stepwise elution ion-exchange chromatography is very often a unstable process. To characterize the unstability of such processes the elution volume variations were examined by the model equation which contained the ion-exchange capacity and the number of adsorption sites. The data needed for the model calculation were obtained from gradient elution experiments. As a model separation system stepwise elution of a model protein (β-lactoglobulin) near the isoelectric point on a weak cation-exchange chromatography column was chosen. The elution volume varied significantly with a small change in the ion-exchange capacity. It was found that the ionic strength of the elution buffer must be adjusted in order to compensate a change in the elution volume due to the ion-exchange capacity variations. The ionic strength and the pH of the elution buffer were also found to be important variables affecting the elution volume. In this model separation system, it was indicated that the pH should be within ±0.1 unit and the ionic strength within ±0.002 mol/l in order to meet the criteria (±5% elution volume variation). It is recommended that gradient elution data be obtained for predicting elution volume variations in stepwise elution. By using the gradient elution data the process diagnosis can be performed, and the important information on the process stability can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call