Abstract
Anthracnose is a major disease in Florida hybrid bunch grapes, caused by a fungus viz. Elsinoe ampelina. Florida hybrid bunch grapes are grown in southeastern USA for their superior wine characteristics. However, the effect of anthracnose on grape productivity and wine quality is a major concern to grape growers. Our research is aimed at determining biochemical basis of anthracnose tolerance in Florida hybrid bunch grape. Leaf samples were collected from the plants infected with E. ampelina at different periods and analyzed for differential protein expression using high throughput two-dimensional gel electrophoresis. Among the 32 differentially expressed leaf proteins, two were uniquely expressed in tolerant genotypes in response to E. ampelina infection. These proteins were identified as mitochondrial adenosine triphosphate synthase and glutamine synthetase, which are known to play a major role in carbohydrate metabolism and defense. Several proteins including ribulose 1-5 bisphosphate-carboxylase involved in photosynthesis were found to be suppressed in susceptible genotypes compared to tolerant genotypes following E. ampelina infection. The results indicate that the anthracnose-tolerant genotypes have the ability to up-regulate and induce new proteins upon infection to defend the invasion of the pathogen as well as maintain the normal regulatory processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.