Abstract

In this paper, we study the deformation, and experimentally quantify the change in stiffness, of an extracellular matrix (ECM) embedded with magnetic beads that are bio-conjugated with the collagen fibers and under the influence of an external magnetic field. We develop an analytical model of the viscoelastic behavior of this modified ECM, and design and implement a stretch test to quantify (based on statistically meaningful experiment data) the resulting changes in its stiffness induced by the external magnetic field. The analytical results are in close agreement with that obtained from the experiments. We discuss the implication of these results that point to the possibility of creating desired stiffness gradients in an ECM in vitro to influence cell behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.