Abstract

The effective deployment of Phasor Measurement Units (PMUs) in Distribution Networks (DNs) requires an enhancement in terms of estimation accuracy beyond the limits of IEEE Std C37.118.1 (IEEE Std), aiming at a Total Vector Error (TVE) in the order of 0.0x% in steady-state test conditions. As a consequence, a rigorous metrological characterization of PMU performance requires a validation system whose accuracy is at least one order of magnitude better than the one of the device under test, i.e. it requires a TVE in the order of 0.00x% in steady-state test conditions and 0.0x% in distorted or dynamic test conditions. In this paper, we consider the hardware and software architecture of a previously published PMU validation system specifically designed for PMUs operating in DNs. In this context, we evaluate the quality of the generated test waveforms, and we carry out a thorough metrological characterization of the uncertainty contributions due to generation, acquisition and synchronization stages. In this sense, the proposed analysis provides a rigorous methodology for the evaluation of such low uncertainty levels, and enables us to identify and discuss the most challenging aspects in the implementation of a high-accuracy PMU validation system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.