Abstract

Advances in additive manufacturing techniques have enabled the development of micro-architectured materials displaying a combination of low-density and lightweight structures with high specific strength and toughness. The mechanical performance of micro-architectured materials can be assessed using standard techniques; however, when studying low- and ultralow density micro-architectured materials, standard characterization techniques can be subject to experimental artifacts. Additionally, quantitative assessment and comparisons of microarchitectures with distinct lattice patterns is not always straightforward. Cancellous bone is a natural, ultralow density (porosity often exceeding 90%), irregular, cellular solid that has been thoroughly characterized in terms of micro-architecture and mechanical performance over the past 30 years. However, most the literature on cancellous bone mechanical properties and micro-structure-function relationships is in the medical literature and is not immediately accessible to materials designers. Here we provide a brief review of state-of-the-art approaches for characterizing the micro-architecture and mechanical performance of ultralow density cancellous bone, including methods of addressing experimental artifacts during mechanical characterization of ultralow density cellular solids, methods of quantifying microarchitecture, and currently understood structure-function relationships.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.