Abstract

In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (107–109 g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 108 g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼109g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 108 g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 108–109 g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call