Abstract

The authors report a detailed characterization of ultrahigh-speed pseudomorphic AlGaAs/InGaAs (on GaAs) modulation-doped field-effect transistors (MODFETs) with emphasis on the device switching characteristics. The nominal 0.1- mu m gate-length device exhibit a current gain cutoff frequency (f/sub t/) as high as 152 GHz. This value of f/sub t/ corresponds to a total delay of approximately 1.0 ps and is attributed to the optimization of layer structure, device layout, and fabrication process. It is shown that the electron transit time in these very short gate-length devices still accounts for approximately 60% of the total delay, and, as a result, significant improvements in switching speed are possible with further reductions of gate length. The results reported clearly demonstrate the potential of the pseudomorphic AlGaAs/InGaAs MODFET as an ultrahigh-speed device. Its excellent switching characteristics are attributed to the high saturation velocity ( approximately 2*10/sup 7/ cm/s), 2DEG sheet density (2.5*10/sup 12/ cm/sup -2/), and current drive capability (>200 mA/mm at the peak transconductance).< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.