Abstract

We identified two tripartite motif (TRIM) genes, LcTRIM21 and LcTRIM39, from the Asian Seabass Lates calcarifer, and examined their responses to experimental betanodavirus infection and stimulation with microbial pathogen-associated molecular patterns. Genes encoding LcTRIM21 and LcTRIM39 were identified, cloned, and sequenced from the Asian Seabass. We analyzed the sequence using a variety of bioinformatics tools to determine protein structure, localization, and establish a phylogenetic tree. By using quantitative real-time PCR, we analyzed expression profiles of the LcTRIM21 and LcTRIM39 genes in response to betanodavirus challenge as well as molecular pathogen-associated molecular patterns like poly(I:C) and Zymosan A. The tissue distribution pattern of these genes was also examined in healthy animals. Asian Seabass homologues of the TRIM gene, LcTRIM21 and LcTRIM39, were cloned, both encoding proteins with 547 amino acids. LcTRIM21 is predicted to have an isoelectric point of 6.32 and a molecular mass of 62.11 kilodaltons, while LcTRIM39 has an isoelectric point of 5.57 and a molecular mass of 62.11 kilodaltons. LcTRIM21 and LcTRIM39 homologues were predicted to be localized in cytoplasm by in silico protein localization. Structurally, both proteins contain an N-terminal really interesting new gene (RING) zinc-finger domain, B-box domain, coiled-coil domain and C-terminal PRY/SPRY domain. Most tissues and organs examined showed constitutive expression of LcTRIM21 and LcTRIM39. Upon poly(I:C) challenge or red-spotted grouper nervous necrosis virus infection, LcTRIM21 and LcTRIM39 mRNA expression was significantly upregulated, suggesting that they may play a critical antiviral role against fish viruses. LcTRIM21 and LcTRIM39 expression were also upregulated by administration of the glucan Zymosan A. The TRIM-containing gene is an E3 ubiquitin ligase that exhibits antiviral activity by targeting viral proteins via proteasome-mediated ubiquitination. TRIM proteins can be explored for the discovery of antivirals and strategies to combat diseases like viral nervous necrosis, that threaten seabass aquaculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call