Abstract

Sulfurtransferases transfer a sulfane atom from a donor substrate to a thiophilic acceptor molecule. Recently a sulfurtransferase specific for the substrate 3-mercaptopyruvate was isolated from Arabidopsis thaliana [Papenbrock, J. & Schmidt, A. (2000) Eur. J. Biochem. 267, 145-154]. In this study a second sulfurtransferase from Arabidopsis was characterized and compared to the enzyme described previously. Sequences of the mature proteins had an identity of 77.7%. The plant sulfurtransferases formed a distinct group within the known eukaryotic sulfurtransferases. When Southern blots were hybridized with labelled cDNA fragments from each of the plant sulfurtransferases the same pattern of bands was obtained indicating the existence of only these two closely related sulfurtransferases. The new sulfurtransferase was expressed in Escherichia coli fused with an N-terminal His6-tag, purified and tested for enzyme activity. Like the first enzyme, the newly isolated protein preferred 3-mercaptopyruvate to thiosulfate as substrate. The Km of both enzymes determined for 3-mercaptopyruvate and cyanide were almost identical. As a result of database searches it became obvious that sulfurtransferase proteins from higher plants showed high similarities to small senescence- and stress-induced proteins. To prove the involvement of sulfurtransferases in senescence-associated processes 3-mercaptopyruvate sulfurtransferase activity was determined in crude protein extracts from Arabidopsis plants of different ages. 3-mercaptopyruvate sulfurtransferase activity and steady-state RNA levels of sulfurtransferases increased with increasing age. However, steady-state protein levels as measured by using an antibody against the sulfurtransferase protein expressed previously decreased. Putative roles of sulfurtransferases in senescence-associated processes are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.