Abstract

The broad-spectrum mercury resistance transposon, TnMERI1, of Bacillusmegaterium strain MB1, contains three proposed operator/promoter (O/P) transcriptional start sites and two regulatory genes (merR1 and merR2). A series of luciferase (lux)-based transcriptional fusion plasmids were studied in Escherichiacoli to show that both merR1 and merR2 gene products repressed transcription from O/PmerB3, O/PmerR1, and O/PmerR2 under uninduced conditions. Derepression occurred when the merR1 gene was present and Hg2+ functioned as an inducer. In the presence of organomercurial compounds, basal transcription of merB3 was needed to produce inorganic Hg2+ as the inducer of expression regulated by MerR1 at O/PmerB3. The presence of merR2 repressed transcription from all three O/Pmer sites under both non-induced conditions and when inorganic Hg2+ or organomercurials were added. These results show that MerR1 functions as a repressor in the absence of Hg2+ and as an activator in the presence of Hg2+, while MerR2 functions as a repressor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.