Abstract

Lichens are known to produce a variety of secondary metabolites including polyketides, which have valuable biological activities. Some polyketides are produced solely by lichens. The biosynthesis of these compounds is primarily governed by iterative type I polyketide synthases. Hypogymnia physodes synthesize polyketides such as physodic, physodalic and hydroxyphysodic acid and atranorin, which are non-reducing polyketides. Two novel non-reducing polyketide synthase (PKS) genes were isolated from a fosmid genomic library of a mycobiont of H. physodes using a 409bp fragment corresponding to part of the reductase (R) domain as a probe. H. physodes PKS1 (Hyopks1) and PKS2 (Hypopks2) contain keto synthase (KS), acyl transferase (AT), acyl carrier protein (ACP), methyl transferase (ME) and R domains. Classification based on phylogeny analysis using the translated KS and AT domains demonstrated that Hypopks1 and Hypopks2 are members of the fungal non-reducing PKSs clade III. This is the first report of non-reducing PKSs containing the R domain-mediated release mechanisms in lichens, which are also rare fungal type I PKS in non-lichenized filamentous fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.