Abstract
Mechanisms underlying chromate resistance in Cr(VI)-hyper-resistant Pseudomonas corrugata strain 28, isolated from a highly Cr(VI) polluted soil, were studied by analyzing its two Cr(VI)-sensitive mutants obtained by insertion mutagenesis. The mutants, namely Crg3 and Crg96, were characterized by the identification of disrupted genes, and by the high-throughput approach called Phenotype MicroArray (PM), which permitted the assay of 1,536 phenotypes simultaneously. Crg3 and Crg96 mutants were affected in a malic enzyme family gene and in a gene encoding for a RecG helicase, respectively. The application of PM provided a wealth of new information relating to the disrupted genes and permitted to establish that chromate resistance in P. corrugata strain 28 also depends on supply on NADPH required in repairing damage induced by chromate and on DNA integrity maintenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.