Abstract

A novel bidirectional proportional throttle valve with a two-dimensional (2D) plug-in structure is proposed in this paper. The valve integrates the 2D valve module and the logic valve into one component, with high integration degree, response speed, and control accuracy. The mathematical model of the 2D valve module is established based on the continuity equation of flow and kinematic equation, and the stability criterion of the valve is established. The effects of the inclination angle, width, and initial overlapping height of the oblique slot and rectangular slot on the dynamic response of the valve are explored by AMESim simulation, and appropriate structural parameters are selected to design and manufacture the prototype valve. A dedicated test bench is built, and the feasibility of the valve design is verified by testing the valve under different system pressures and different load variations. The experimental results show that, at a system pressure of 21 MPa, the prototype valve has a flow rate of 53.5 L min−1, a hysteresis of 0.8%, a linearity of 5%, and a step response time of 6.5 ms. When the analog valve opening is changed by inputting 0.1 Hz signals with different waveforms under different system pressures, the maximum fluctuation of the main spool displacement is less than 1 μm, and the maximum stabilization time does not exceed 110 ms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.