Abstract
The O antigens of outer membrane-bound lipopolysaccharides (LPS) in gram-negative bacteria are oligosaccharides consisting of repeating units with various structures and antigenicities. The O56 and O152 antigens of Escherichia coli both contain a Glc-beta1-3-GlcNAc linkage within the repeating unit. We have cloned and identified the genes (wfaP in O56 and wfgD in O152) within the two O-antigen gene clusters that encode glucosyltransferases involved in the synthesis of this linkage. A synthetic substrate analog of the natural acceptor substrate undecaprenol-pyrophosphate-lipid [GlcNAc-alpha-PO3-PO3-(CH2)11-O-phenyl] was used as an acceptor and UDP-Glc as a donor substrate to demonstrate that both wfgD and wfaP encode glucosyltransferases. Enzyme products from both glucosyltransferases were isolated by high-pressure liquid chromatography and analyzed by nuclear magnetic resonance. The spectra showed the expected Glc-beta1-3-GlcNAc linkage in the products, confirming that both WfaP and WfgD are forms of UDP-Glc: GlcNAc-pyrophosphate-lipid beta-1,3-glucosyltransferases. Both WfaP and WfgD have a DxD sequence, which is proposed to interact with phosphate groups of the nucleotide donor through the coordination of a metal cation, and a short hydrophobic sequence at the C terminus that may help to associate the enzymes with the inner membrane. We showed that the enzymes have similar properties and substrate recognition. They both require a divalent cation (Mn2+ or Mg2+) for activity, are deactivated by detergents, have a broad pH optimum, and require the pyrophosphate-sugar linkage in the acceptor substrate for full activity. Substrates lacking phosphate or pyrophosphate linked to GlcNAc were inactive. The length of the aliphatic chain of acceptor substrates also contributes to the activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Bacteriology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.