Abstract
Recent studies on turbulent exchange processes between the urban canopy layer and the atmosphere above have focused primarily on mechanical effects and less so on thermal ones, mostly by means of laboratory and numerical investigations and rarely in the real environment. More recently, these studies have been adopted to investigate city breathability, urban comfort and citizen health, with the aim to find new mitigation or adaptation solutions to air pollution and urban heat island, to enhance the citizen wellness. To investigate the small-scale processes characterizing vegetative and non-vegetative urban canopies, two field campaigns have been carried out within the city of Bologna, Italy. New mechanical and thermal time scales, and their ratios (rates), associated with inertial and thermal flow circulations, have been derived to this scope. In the non-vegetated canopy, mechanical time scales are found to describe fast exchanges at the rooftop and slow within the canopy, while thermal ones to describe fast mixing in the whole canopy. Faster processes are found in the vegetative canopy, with rapidly mixed mechanical time scales and varying thermal ones. The exchange rates are found to identify favorable mixing conditions in the 50−75% of the investigated period, but extreme disadvantageous events can totally suppress the exchanges. The exchange rates are also found to drive the pollutant removal from vegetated and non-vegetated canopies, with an efficacy which depends on the in-canyon circulation. The impacts of real trees in a real neighborhood of the city is tackled with a simplified fluid-dynamics model, where mean flow and turbulence are studied with different vegetation cofigurations, topological and morphological characteristics. Vegetation is found to increase both blocking and channeling effects on the mean flow and to modify the production/dissipation rate of turbulence, depending on the wind direction and topology. Nevertheless, buildings maintain a predominant impact on the atmospheric flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.