Abstract

The junction properties of tunnel silicon oxide (SiOx) passivated contact (TOPCon) with n-type poly-Si on p-type c-Si wafer are characterized using current-voltage (J-V) and capacitance-voltage (C-V) measurements. The dark J-V curves show a standard diode characteristic with a turn-on voltage of ∼0.63 V, indicating a p-n junction is formed. While the C-V curve displays an irregular shape with features of 1) a slow C increase with the decrease of the magnitude of reverse bias voltage, being used to estimate the built-in potential (Vbi), 2) a significant increase at a given positive bias voltage, corresponding to the geometric capacitance crossing the ultrathin SiOx, and 3) a sharp decrease to negative values, resulting from the charge tunneling through the SiOx layer. The C of depleting layer deviates from the normal linear curve in the 1/C2-V plot, which is caused by the diffusion of P dopants from the n-type poly-Si into the p-type c-Si wafer as confirmed by the electrochemical capacitance-voltage measurements. However, the 1/C2+γ-V plots with γ > 0 leads to linear curves with a proper γ and the Vbi can still be estimated. We find that the Vbi is the range of 0.75–0.85 V, increases with the increase of the doping ratio during the poly-Si fabrication process, and correlates with the passivation quality as measured by the reverse saturated current and implied open circuit voltage extracted from transient photoconductivity decay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.