Abstract

The Tudor-sn protein, which contains four staphylococcal nuclease domains and a Tudor domain, is a ubiquitous protein found in almost all organisms. It has been reported that Tudor-sn in mammals participates in various cellular pathways involved in gene regulation, cell growth, and development. In insects, we have previously identified a Tudor-sn ortholog in the silkworm, Bombyx mori, and detected its interactions between with Argonaute proteins. The role of Tudor-sn in silkworm, however, still remains largely unknown. In this study, we demonstrated that silkworm Tudor-sn is a stress granule (SG) protein, and determined its interactions with other SG proteins using Bimolecular Fluorescence Complementation assay and Insect Two-Hybrid method. Depletions of Argonaute proteins and SG-marker protein Tia1 by RNAi impaired the involvement of Tudor-sn in the SG formation. Protein domain deletion analysis of Tudor-sn demonstrated that SN2 is the key domain required for the aggregation of Tudor-sn in SGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call